분류
2024년 8월
작성일
2024.04.08
수정일
2024.04.08
작성자
김용수
조회수
73

Advanced Defense Framework against Physical Adversarial Camouflage via Continual Adversarial Training

Title: Advanced Defense Framework against Physical Adversarial Camouflage via Continual Adversarial Training

 

Abstract:

Physical adversarial camouflage has emerged as a significant threat to computer vision AI models, particularly in deceiving x-object detectors from any viewpoint with full-surface patterns on target x-objects. Despite the urgency, effective countermeasures have yet to be proposed. This dissertation introduces a new method, termed continual adversarial training, tailored for defending against physical adversarial camouflage. Traditional adversarial training involves retraining the model to enable it to identify adversarial examples. However, since adversarial camouflage typically targets specific classes, such as vehicles, conducting adversarial training exclusively with data from classes subjected to adversarial camouflage can lead to catastrophic forgetting, wherein the model loses previously learned information about other classes. To mitigate this, our method combines knowledge distillation-based continual learning with adversarial training to address catastrophic forgetting while enhancing robustness against adversarial camouflage. The framework further enables selective adversarial training on specific classes, making it particularly effective against adversarial camouflage. Additionally, we enhance performance by optimizing the loss term in continual adversarial training and employing an iterative, dynamic adversarial training framework. Our extensive experiments show robust applicability across diverse x-object detection models.

학위연월
2024년 8월
지도교수
김호원
키워드
Adversarial Defense, Adversarial Camouflage, Continual Learning
소개 웹페이지
https://sites.google.com/view/kysphd/
첨부파일
첨부파일이(가) 없습니다.
다음글
Task-Specific Differential Private Data Publish Method for Privacy-Preserving Deep Learning
신진명 2024-04-09 18:00:17.46
이전글
한글 메신저 채팅의 크로스 텍스팅 탐지를 위한 저자 검증 모형
이다영 2024-04-05 10:38:33.61
RSS 2.0 122
게시물 검색
박사학위논문
번호 제목 작성자 작성일 첨부파일 조회수
122 Effective Deep Learning Primitives Design for Bina 황선진 2024.10.14 0 11
121 Toward Immersive Multi-view Video Streaming 탄중 디온 2024.10.14 0 10
120 A Low-cost Deep Learning Model for Real-time Surve 등 제강 2024.10.10 0 22
119 An Enhancement of Neural Network by a Nested Rule- 양홍진 2024.10.09 0 27
118 다양한 도메인과 데이터 형식에 강건한 사전학습 언어모델 기반의 표 질의응답 방법 조상현 2024.10.09 0 22
117 Trust Guard Extension for Enhanced Security Featur 김해용 2024.05.04 0 58
116 Task-Specific Differential Private Data Publish Me 신진명 2024.04.09 0 57
115 Advanced Defense Framework against Physical Advers 김용수 2024.04.08 0 73
114 한글 메신저 채팅의 크로스 텍스팅 탐지를 위한 저자 검증 모형 이다영 2024.04.05 0 83
113 상태 기반 테스트 시나리오 보강 방법 이선열 2023.10.17 0 150
112 Manufacturing Testing Automation FrameworkBased on 강효은 2023.10.17 0 172
111 Synthesizing Robust Physical Camouflage for Univer 수랸토 나우팔 2023.10.16 0 166
110 복잡도 다양성을 고려한 C 프로그램의 시험 용이성 예측 모형 구축 방법 최현재 2023.10.16 0 140
109 Design and Optimization of Quantum Arithmetic Circ 라라사티 하라스타 타티마 2023.10.13 0 168
108 Improving 6TiSCH Network Formation and Transmissio 파와즈 자키 자키얄 2023.10.10 0 157
107 저지연 고신뢰 운전자 프로파일링을 위한 딥러닝 모델 및 조기 종료 기법 임재봉 2023.10.08 0 220
106 802.11ax 대규모 Wi-Fi 환경의 심층 생성 모델을 활용한 트래픽 모델링 및 AP 이재민 2023.04.07 0 132
105 뉴런 클러스터를 활용한 합성곱 신경망 이미지 분류 신뢰성 향상 방법 이영우 2023.04.06 0 124
104 Trust Guard Extension Framework for Enhanced Secur 김해용 2023.04.06 0 105
103 노이즈 오염 하에서의 효율적 최적화를 위한 확률적 평가 샘플 누적 전략 김정민 2023.04.06 1 135