분류
2024년 8월
작성일
2024.04.08
수정일
2024.04.08
작성자
김용수
조회수
214

Advanced Defense Framework against Physical Adversarial Camouflage via Continual Adversarial Training

Title: Advanced Defense Framework against Physical Adversarial Camouflage via Continual Adversarial Training

 

Abstract:

Physical adversarial camouflage has emerged as a significant threat to computer vision AI models, particularly in deceiving x-object detectors from any viewpoint with full-surface patterns on target x-objects. Despite the urgency, effective countermeasures have yet to be proposed. This dissertation introduces a new method, termed continual adversarial training, tailored for defending against physical adversarial camouflage. Traditional adversarial training involves retraining the model to enable it to identify adversarial examples. However, since adversarial camouflage typically targets specific classes, such as vehicles, conducting adversarial training exclusively with data from classes subjected to adversarial camouflage can lead to catastrophic forgetting, wherein the model loses previously learned information about other classes. To mitigate this, our method combines knowledge distillation-based continual learning with adversarial training to address catastrophic forgetting while enhancing robustness against adversarial camouflage. The framework further enables selective adversarial training on specific classes, making it particularly effective against adversarial camouflage. Additionally, we enhance performance by optimizing the loss term in continual adversarial training and employing an iterative, dynamic adversarial training framework. Our extensive experiments show robust applicability across diverse x-object detection models.

학위연월
2024년 8월
지도교수
김호원
키워드
Adversarial Defense, Adversarial Camouflage, Continual Learning
소개 웹페이지
https://sites.google.com/view/kysphd/
첨부파일
첨부파일이(가) 없습니다.
다음글
Task-Specific Differential Private Data Publish Method for Privacy-Preserving Deep Learning
신진명 2024-04-09 18:00:17.46
이전글
한글 메신저 채팅의 크로스 텍스팅 탐지를 위한 저자 검증 모형
이다영 2024-04-05 10:38:33.61
RSS 2.0 139
게시물 검색
박사학위논문
번호 제목 작성자 작성일 첨부파일 조회수
139 Enhancing Threat Detection and Response Automation 새글 이스마일 2025.10.20 5 12
138 최적성 이론을 활용한 강건한 한국어 통합 G2P 프레임워크 설계 및 분석 새글 최성기 2025.10.17 0 19
137 고속 컨베이어 환경에서의 생산 공정물 결함 검출을 위한 AI 비전 시스템 새글 김형건 2025.10.17 0 26
136 Toward Reliable and Scalable Multi-Cell LoRaWAN Ne 새글 호앙 꾸옥 홍 낫 2025.10.16 0 22
135 Differentially Private Data-Centric Mechanism for 우타리예바 아쎔 2025.10.10 0 48
134 Adaptive Penalty Optimization and Scalable Quantum 정선근 2025.10.02 0 54
133 Comparative Complexity of Neuropeptide and Recepto 류승희 2025.10.01 0 54
132 확산 모델 기반 필기 이미지 생성에 관한 연구 홍동진 2025.04.10 0 141
131 연합학습 기반 그래프 신경망을 활용한 전기차 충전소 최적 선택 기법 류준우 2025.04.09 0 123
130 Exploring Quantum Approach Applied to Cryptanalysi 와다니 리니 위스누 2025.04.08 0 155
129 Towards computation - communication efficient and 응우옌 민 두옹 2025.04.08 0 112
128 Hybrid Quantum Residual Neural Networks for Classi 노대일 2025.04.08 0 135
127 Distributed Resource Management for Massive IoT Ne 응우옌 쑤언 둥 2025.04.08 0 99
126 A Framework for Leveraging Large Language Models i 데리 프라타마 2025.04.07 0 144
125 Discovery and Authentication of Marker Genes Using 프라타마 리안 다니스 아디 2025.04.07 0 155
124 산업 환경의 IEEE 802.15.4 TSCH 기반 네트워크에서 트래픽 처리량 향상을 위한 이희준 2025.04.07 0 133
123 Uncertainty-Based Hybrid Deep Learning Approach fo 멘가라 악셀 기드온 2024.12.10 0 163
122 Effective Deep Learning Primitives Design for Bina 황선진 2024.10.14 0 165
121 Toward Immersive Multiview Video Streaming through 탄중 디온 2024.10.14 0 128
120 A Low-cost Deep Learning Model for Real-time Low L 등 제강 2024.10.10 0 185