분류
2024년 2월
작성일
2023.10.10
수정일
2024.01.05
작성자
파와즈 자키 자키얄
조회수
224

Improving 6TiSCH Network Formation and Transmission using Q-Learning

Title: Improving 6TiSCH Network Formation and Transmission using Q-Learning

Summary: 
The study proposes a unified approach to augment the formation and transmission efficiency within 6TiSCH (IPv6 over IEEE802.15.4e time-slotted channel hopping mode) wireless sensor networks leveraging Q-Learning. Addressing the challenges of congestion, increased network formation time, and elevated energy consumption prevalent in dense networks, the proposal introduces Q-Trickle, an adaptive trickle timer algorithm. Q-Trickle optimizes the transmission or suppression of DIO (DODAG Information x-x-object) control packets based on minimal cell and transmission queue conditions, ensuring fair transmission distribution and mitigating transmission congestion. Additionally, to enhance the Routing Protocol for Low-Power and Lossy Networks (RPL) in 6TiSCH networks, an adaptive parent change algorithm alongside an RPL x-x-objective Function (OF) based on cell usage, collectively termed as ACI-RPL, is proposed. ACI-RPL dynamically adjusts to network conditions, promoting better parent selection in dynamic networks. Together, Q-Trickle and ACI-RPL aim to reduce network congestion, energy consumption, and foster a more efficient and reliable communication infrastructure within 6TiSCH networks, paving the way for substantial advancements in managing and optimizing such networks.



학위연월
2024년 2월
지도교수
정상화
키워드
6TiSCH, RPL, trickle timer, x-objective function, reinforcement learning, wireless sensor network
소개 웹페이지
https://sites.google.com/view/dzf-diss/
첨부파일
첨부파일이(가) 없습니다.
다음글
Design and Optimization of Quantum Arithmetic Circuits for Binary Elliptic Curve Discrete Logarithms
라라사티 하라스타 타티마 2023-10-13 21:07:48.603
이전글
저지연 고신뢰 운전자 프로파일링을 위한 딥러닝 모델 및 조기 종료 기법
임재봉 2023-10-08 20:35:31.703
RSS 2.0 139
게시물 검색
박사학위논문
번호 제목 작성자 작성일 첨부파일 조회수
139 Enhancing Threat Detection and Response Automation 새글 이스마일 2025.10.20 5 20
138 최적성 이론을 활용한 강건한 한국어 통합 G2P 프레임워크 설계 및 분석 최성기 2025.10.17 0 25
137 고속 컨베이어 환경에서의 생산 공정물 결함 검출을 위한 AI 비전 시스템 김형건 2025.10.17 0 31
136 Toward Reliable and Scalable Multi-Cell LoRaWAN Ne 호앙 꾸옥 홍 낫 2025.10.16 0 28
135 Differentially Private Data-Centric Mechanism for 우타리예바 아쎔 2025.10.10 0 53
134 Adaptive Penalty Optimization and Scalable Quantum 정선근 2025.10.02 0 56
133 Comparative Complexity of Neuropeptide and Recepto 류승희 2025.10.01 0 59
132 확산 모델 기반 필기 이미지 생성에 관한 연구 홍동진 2025.04.10 0 142
131 연합학습 기반 그래프 신경망을 활용한 전기차 충전소 최적 선택 기법 류준우 2025.04.09 0 124
130 Exploring Quantum Approach Applied to Cryptanalysi 와다니 리니 위스누 2025.04.08 0 158
129 Towards computation - communication efficient and 응우옌 민 두옹 2025.04.08 0 116
128 Hybrid Quantum Residual Neural Networks for Classi 노대일 2025.04.08 0 136
127 Distributed Resource Management for Massive IoT Ne 응우옌 쑤언 둥 2025.04.08 0 101
126 A Framework for Leveraging Large Language Models i 데리 프라타마 2025.04.07 0 145
125 Discovery and Authentication of Marker Genes Using 프라타마 리안 다니스 아디 2025.04.07 0 156
124 산업 환경의 IEEE 802.15.4 TSCH 기반 네트워크에서 트래픽 처리량 향상을 위한 이희준 2025.04.07 0 136
123 Uncertainty-Based Hybrid Deep Learning Approach fo 멘가라 악셀 기드온 2024.12.10 0 164
122 Effective Deep Learning Primitives Design for Bina 황선진 2024.10.14 0 167
121 Toward Immersive Multiview Video Streaming through 탄중 디온 2024.10.14 0 129
120 A Low-cost Deep Learning Model for Real-time Low L 등 제강 2024.10.10 0 188