분류
2020년 2월
작성일
2019.10.14
수정일
2020.01.03
작성자
레티투흐엉
조회수
99

Classification Methods for Household Appliances on High-Frequency NILM Data

Abstract: This dissertation deals with current NILM issues by implementing efficient models based on the classification of household appliances. The current NILM has two challenges. The first challenge is to classify household appliances that have a similar power consumption. The second one is to identify various load types including linear load and non-linear load. In this dissertation, to resolve the two above issues, we proposed two methods. These methods are performed on two publicly NILM datasets and private data is collected at Lab at high-frequency data.


In the first proposed method, we approach based on the steady-state feature to extract a novel feature group, that is, magnitude and phase. These features become the input of the learning model, bagging decision tree. This model can detect well on both datasets including the PLAID dataset and private data, which contain different appliances have a similar power consumption. Such as the accuracy and F1 of method 1 obtained 92.8% and 82.48% on the PLAID dataset, respectively. Besides, the accuracy and F1 evaluation achieved 93.67% and 93.14% on a private dataset, respectively. In summary, the accuracy and F1 measurement obtained of the proposed method are more accurate than the prior methods.


In the second proposed method, we approach based on the transient-state feature to extract another novel feature group, that is, instantaneous amplitude, instantaneous phase, and instantaneous frequency. These features are used for the learning model, that is, Seq2Seq LSTM. This method achieves higher performance than the previous methods on the same publicly dataset, BLUED dataset. In particular, the accuracy and F1 results of method 2 achieved 90.58% and 90.4%, respectively. Furthermore, we performed this method on private data and also obtained the accuracy and F1 correspond to 93.40% and 94.23%.


In summary, this dissertation overcomes the current NILM problems by performing two proposed methods. By comparing with other methods on the same publicly dataset, we confirm that our proposed methods outperforming than the state-of-the-art. 

학위연월
2020년 2월
지도교수
김호원
키워드
NILM, high frequency, FFT, Hilbert transform, Decision Tree, Seq2Seq LSTM
소개 웹페이지
https://sites.google.com/view/huongphddissertation/home
첨부파일
첨부파일이(가) 없습니다.
다음글
포그 컴퓨팅 기반 차량 네트워크에서 DQN을 적용한 문제 해결: 동적 우선순위 스케줄링, 캐시 교체, 충돌 제어
박성진 2019-10-15 13:36:50.04
이전글
대규모 사물인터넷의 안정적 지원을 위한 저전력 광역 네트워크 채널 자원 구조화 및 할당 기법
변승규 2019-04-15 09:31:03.857
RSS 2.0 139
게시물 검색
박사학위논문
번호 제목 작성자 작성일 첨부파일 조회수
139 Enhancing Threat Detection and Response Automation 이스마일 2025.10.20 5 41
138 최적성 이론을 활용한 강건한 한국어 통합 G2P 프레임워크 설계 및 분석 최성기 2025.10.17 0 44
137 고속 컨베이어 환경에서의 생산 공정물 결함 검출을 위한 AI 비전 시스템 김형건 2025.10.17 0 43
136 Toward Reliable and Scalable Multi-Cell LoRaWAN Ne 호앙 꾸옥 홍 낫 2025.10.16 0 35
135 Differentially Private Data-Centric Mechanism for 우타리예바 아쎔 2025.10.10 0 67
134 Adaptive Penalty Optimization and Scalable Quantum 정선근 2025.10.02 0 65
133 Comparative Complexity of Neuropeptide and Recepto 류승희 2025.10.01 0 68
132 확산 모델 기반 필기 이미지 생성에 관한 연구 홍동진 2025.04.10 0 150
131 연합학습 기반 그래프 신경망을 활용한 전기차 충전소 최적 선택 기법 류준우 2025.04.09 0 132
130 Exploring Quantum Approach Applied to Cryptanalysi 와다니 리니 위스누 2025.04.08 0 170
129 Towards computation - communication efficient and 응우옌 민 두옹 2025.04.08 0 126
128 Hybrid Quantum Residual Neural Networks for Classi 노대일 2025.04.08 0 144
127 Distributed Resource Management for Massive IoT Ne 응우옌 쑤언 둥 2025.04.08 0 111
126 A Framework for Leveraging Large Language Models i 데리 프라타마 2025.04.07 0 151
125 Discovery and Authentication of Marker Genes Using 프라타마 리안 다니스 아디 2025.04.07 0 168
124 산업 환경의 IEEE 802.15.4 TSCH 기반 네트워크에서 트래픽 처리량 향상을 위한 이희준 2025.04.07 0 146
123 Uncertainty-Based Hybrid Deep Learning Approach fo 멘가라 악셀 기드온 2024.12.10 0 175
122 Effective Deep Learning Primitives Design for Bina 황선진 2024.10.14 0 172
121 Toward Immersive Multiview Video Streaming through 탄중 디온 2024.10.14 0 148
120 A Low-cost Deep Learning Model for Real-time Low L 등 제강 2024.10.10 0 195