작성일
2025.04.04
수정일
2025.04.04
작성자
아라빈 바라라만
조회수
9

Optimizing User Pairing and Power Allocation for OMA-NOMA Enabled Urban Vehicular Networks

The rise of intelligent transportation systems has transformed how vehicles communicate, letting them share real-time data with each other and roadside infrastructure to boost safety, smooth out traffic, and make urban driving more enjoyable. But as more vehicles connect in crowded cities, the pressure on limited wireless spectrum grows intense, exposing the weaknesses of old-school orthogonal multiple access (OMA) methods. OMA sticks to a rigid one-user-per-channel setup that just can’t keep up with lots of vehicles, wasting resources and often dropping the ball on Quality of Service (QoS). Enter non-orthogonal multiple access (NOMA) a game-changer that lets multiple users share a channel by smartly juggling power levels and using successive interference cancellation to sort out the signals. It’s a big leap for efficiency, but rolling it out in vehicular networks isn’t easy. Things like pairing users, assigning channels, controlling power, and flipping between NOMA and OMA modes get tricky, especially with cars zooming around and signals shifting fast.

This thesis tackles those challenges with an adaptive framework that pulls together RSU-vehicle user (VU) association, channel assignment, NOMA?OMA switching, and power optimization into one cohesive package. It blends solid math-based optimization with Reinforcement Learning (RL) to handle the chaos of urban networks on the fly. Starting with a mathematical model, we cut total transmit power by 27% and boosted user association fairness by 18% measured with Jain’s fairness index leaving baselines like random assignment and utility-based methods in the dust. Then, RL steps in, teaching the system to adapt as things change: user numbers, channel strength, QoS needs. The RL agent learns on its own how to pair users, tweak power, and switch modes, aiming for top-notch energy savings, throughput, and fairness without being tied to rigid rules. Plus, we’ve baked in low-complexity tricks like binary relaxation and problem splitting to keep it fast enough for real-time use.

We put it through its paces with thorough MATLAB simulations, testing everything from static setups to busy scenes with 20 vehicles and five RSUs juggling multiple channels. The results shine: it’s scalable, tough, and efficient, especially when vehicles swarm urban intersections and the network keeps shifting. This work merges optimization smarts with RL’s adaptability, delivering an energy-efficient, fair, and scalable fix for NOMA-powered vehicular networks. It also sets the stage for digging deeper into distributed setups, complex traffic patterns, and even real-world trials pushing us closer to rock-solid communication for tomorrow’s urban roads.

학위연월
2025년 8월
지도교수
김태운
키워드
NOMA- OMA, Vehicular Networks, User Pairing, Power Allocation, Channel Assignment
소개 웹페이지
https://sites.google.com/view/masters-thesis-arao-balaram/home
첨부파일
첨부파일이(가) 없습니다.
다음글
블록체인과 CMAC 검증을 통한 전기차 배터리 관리 시스템의 데이터 신뢰성 확보 방안 설계 및 구현
김재현 2025-04-04 16:58:45.67
이전글
Deep Learning-Assisted Microservice Deployment Strategy for 3-Tier Edge Computing Environments
뉴그로호 아빌리아 쿠수마푸테리 2025-04-03 20:29:42.74
RSS 2.0 785
게시물 검색
석사학위논문
번호 제목 작성자 작성일 첨부파일 조회수
785 Lightweight Time Series Forecasting with LLMs: Le 새글 코난 루스 엠마누엘레 비투아 2025.04.04 0 19
784 블록체인과 CMAC 검증을 통한 전기차 배터리 관리 시스템의 데이터 신뢰성 확보 방안 설계 새글 김재현 2025.04.04 0 8
783 Optimizing User Pairing and Power Allocation for O 새글 아라빈 바라라만 2025.04.04 0 9
782 Deep Learning-Assisted Microservice Deployment Str 새글 뉴그로호 아빌리아 쿠수마푸테리 2025.04.03 0 8
781 GVMambaIR: Graph Vison Mamba for Image Restoration 새글 리엔 홍키 2025.04.03 0 15
780 드론을 활용한 실시간 원격 흘수 정밀 계측 프레임워크 새글 박찬일 2025.04.02 0 12
779 Mamba-Attention Surface Analysis for Brain Develop 새글 짠시닷 2025.04.02 0 24
778 Multi-Query Retrieval Augmented Generation (RAG) f 새글 리잘디 파흐미 2025.04.02 0 25
777 BLSM-Tree: 블록체인 데이터의 효율적인 범위 탐색을 위한 인덱스 구조 새글 이병영 2025.04.02 0 12
776 전이학습을 통한 사전 학습된 오디오 뉴럴 넷 기반 효과음 분류 및 자동 자막 생성 시스템 새글 정혜윤 2025.04.01 0 28
775 Federated Domain Generalization with On-Server Gra 새글 응우옌쫑빈 2025.04.01 0 32
774 Virtual Screening in a Large Compound Library with 새글 배종현 2025.04.01 0 29
773 텍스트 종속 화자 검증을 위한 경량 딥러닝 모델의 설계 및 구현 새글 신채림 2025.03.31 0 44
772 실내 NLOS 환경에서 RTLS 정확도 향상을 위한 편향 및 편차 맵 기반 가중 그래프 탐 안현기 2024.10.18 0 116
771 비정형 환경 아크 센싱 개선을 위한 중간값 기반 데이터 클러스터링 활용 기법 김희준 2024.10.17 2 102
770 그래프 구조 기반 K-Means를 사용한 간선 방문 지향 MCPP 이해성 2024.10.15 0 100
769 트랜스포머 기반의 폐암 슬라이드 이미지 자동분할에 대한 연구 이리나 2024.10.14 0 92
768 마스크 기반 재식별 최적화와 Multi o bject Tracking에서의 ID-Switc 유수빈 2024.10.14 0 102
767 Histone Modification Peak Imputation Using Mixture 김민수 2024.10.14 0 66
766 Shor 알고리즘 최적화를 위한 양자 회로에서의 곱셈 연산 조재한 2024.10.14 0 130